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1 Measured quantitities

Definition. A measured quantity consists of:

• the type of quantity measured: length, volume, duration, temperature,
number of people, price, . . .

• the unit of measurement used: m, cm, inch, light-years, microseconds
(µs), millenia, CHF, ◦F, people, . . .

• the magnitude that has been measured (an integer or terminating dec-
imal number)

• the (absolute) uncertainty associated with the measurement: this is
an upper estimate of the measurement’s level of precision

Example 1.1. The width w of a closet has been measured with a measuring band.
We read on the band the magnitude 61.4, but estimate that the measurement may
be off by as much as 2 mm. So the true width lies somewhere between 61.2 and
61.6 cm. We write:

• w = 61.4± 0.2 cm

• 61.2 ≤ w ≤ 61.6

• w ∈ [61.2, 61.6] (measurement interval)

Example 1.2. In particle physics, the “fine-structure constant” α is known with
impressive precision:

α = 0.007 297 352 566 4± 0,000 000 000 001 7 (unitless)

Because this is somewhat hard to read, the uncertainty in the last two digits can
also be written in parentheses behind the magnitude:

α = 0.007 297 352 566 4(17).

The uncertainty can be expressed either in absolute terms (in the same
unit as the magnitude) or in relative terms (as a fraction or percentage of
the magnitude).

Definition. The relative uncertainty of a measured quantity is the ratio
between its absolute uncertainty ∆Q and its magnitude Q:

δQ =
∆Q

Q
.

Oftentimes, when a quantity is known with high precision, the relative
uncertainty is expressed with its inverse, like a scale factor.
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Example 1.3. The relative uncertainty on the closet width w in example 1.1 is
0.2
61.4 ' 0.0032 = 0.32%, or about 1 part in 300. The relative uncertainty on the
fine-structure constant α (example 1.2) is 0.000 000 000 023, or about 1 part in 4.3
billion. This is the most precisely known physical constant.

Exercise 1.1. For each quantity, state the measurement interval and the relative
uncertainty.

(a) mass of a frog: 10.3 g ± 0.05 g
(b) temperature in an oven: 120 ◦C ± 5 ◦C

Exercise 1.2. Transcribe the measurement intervals into a magnitude and uncer-
tainty.

(a) [12.25 kg, 12.35 kg]
(b) [5300 ◦C, 5350 ◦C]

Exercise 1.3. The age of the universe is estimated at 13.8 billion years, with a
relative uncertainty of 0.145%.

(a) Find the absolute uncertainty and state the measurement interval.
(b) Express the relative uncertainty in the form “1 part in . . . ”.

Exercise 1.4. Estimate or research the absolute and relative uncertainties of these
measurement devices. Discuss with your classmates.

kitchen scale, person scale, thermometer (oven), thermometer (medi-
cal), stopwatch, speed meter, protractor, vernier scale

Exercise 1.5. The side length of a square is 3.25(5) m. Find the measurement
interval for its area.
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2 Scientific notation

Very large and very small numbers are cumbersome to write in decimal
representation. This is why, especially in science, a more compact form of
writing is being used:

Definition. The scientific notation of a real number x is:

x = ±m× 10n,

where m (the mantissa) is a real number in the interval [1; 10) and n
(the exponent) is an integer.

Example 2.1. The eighth Mersenne prime is the number

231 − 1 = 2 147 483 647 = 2.147 483 647× 109 ' 2.15× 109.

Example 2.2. The mass of the Earth is

M⊕ ' 5 972 200 000 000 000 000 000 000 kg = 5.9722× 1024 kg.

The absolute uncertainty on this value is 6× 1020 kg, which can be written

M⊕ = 5.9722(6)× 1024 kg = (5.9722± 0.0006)× 1024 kg.

The scientific notation separates the order of magnitude of a quantity
from its more detailed sequence of digits. This allows very large numbers
to be entered into a pocket calculator (who can only display a dozen or less
digits) using the button “EE” = enter exponent. For example, in order to
enter the number 9.1× 1017, we type

9 . 1 EE 1 7 =

Very small numbers have negative exponents, following the pattern

102 = 100

101 = 10

100 = 1

10−1 = 0.1

10−2 = 0.01

10−3 = 0.001

. . .
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Very small numbers are entered into a calculator as follows (example:
8.03× 10−18):

8 . 0 3 EE 1 8 +/- =

Theorem. The decimal form of the number 10n, where n is an integer,
consists of a 1

• followed by n zeroes if n is positive,

• preceded by |n| zeroes if n is negative (including the zero in front of
the decimal point).

Example 2.3. The fine-structure constant and its absolute uncertainty can be writ-
ten:

α = 7.297 352 566 4× 10−3 ± 1.7× 10−12,

and its relative uncertainty is 2.3× 10−11.

In the metric system, as it is implemented in the International System
of Units (SI for Système International), unit names allow prefixes to denote
decimal multiples:

prefix name symbol factor short scale (US) long scale (UK)
deca da 101 ten ten
hecto h 102 hundred hundred
kilo k 103 thousand thousand

mega M 106 million million
giga G 109 billion thousand million
tera T 1012 trillion billion
peta P 1015 quadrillion thousand billion
exa E 1018 quintillion trillion

zetta Z 1021 sextillion thousand trillion
yotta Y 1024 septillion quadrillion

The prefix is chosen so that the magnitude is a number between 1 and
1000. The SI prefixes are used in conjunction with technical units, such as
watts (W), liters (l) or bytes (B). For historical reasons, it is uncommon to
use them on lengths, times or masses (there are no “gigameters”, “petagrams”
or “megayears”).

Here are the prefixes for decimal subdivisions. They can be used on the
SI units of any type of quantity.
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prefix name symbol factor short scale (US) long scale (UK)
deci d 10−1 tenth tenth
centi c 10−2 hundredth hundredth
milli m 10−3 thousandth thousandth
micro µ 10−6 millionth millionth
nano n 10−9 billionth thousand millionth
pico p 10−12 trillionth billionth

femto f 10−15 quadrillionth thousand billionth
atto a 10−18 quintillionth trillionth

zepto z 10−21 sextillionth thousand trillionth
yotto y 10−24 septillionth quadrillionth

Exercise 2.1.

The eight planets in our solar system have very different masses:

Planet Mass
Mercury 330 200 000 000 000 000 000 000 kg
Venus 4 869 000 000 000 000 000 000 000 kg
Earth 5 974 000 000 000 000 000 000 000 kg
Mars 641 900 000 000 000 000 000 000 kg
Jupiter 1 899 000 000 000 000 000 000 000 000 kg
Saturn 568 500 000 000 000 000 000 000 000 kg
Uranus 86 830 000 000 000 000 000 000 000 kg
Neptune 102 430 000 000 000 000 000 000 000 kg

(a) Write the masses in scientific notation.
(b) Sort the planets by mass, from largest to smallest.

Exercise 2.2. Write in decimal form:

(a) 9.1× 102

(b) 4.43× 109

(c) 1.03× 1022

(d) 30 quadrillion 421 billion (short scale)
(e) 4.5× 10−5

(f) 9.091× 10−1

(g) −1.23× 10−2

Exercise 2.3. Write in scientific notation:

(a) 94 800
(b) 329 800 000
(c) 15 530 000 000 000 000
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(d) 12 540 billion 300 million (long scale)
(e) 0.000 000 005922

(f)
1

5 trillion
(short scale)

Exercise 2.4. Write in decimal and scientific form:

(a) 0.707× 106

(b) 61× 10−3

(c) (1204× 107)× (0.3× 105)
(d) 0.43× 1015

(e) (4.55× 10−13) : (2× 1010)

Exercise 2.5. Complete the table.

decimal form scientific form SI unit
mean distance
Earth–Mars 228 000 000 000 m –

age of the Sun 4.6× 109 years –

mass of the Sun
(M�)

1.989× 1030 kg –

heating power of
the Sun 384.6 YW

mass of a
carbon-12 atom

0.000 000 000 000 000
000 000 019 926 467 1 g

shortest light pulse 1.7× 10−17 s

typical diameter of
an atom 100 pm

number of cells in
a human body 100 000 000 000 000 –

water content of
the Mediterranean 4.3× 1018 l

typical capacity of
a hard drive 1 TB
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3 Significant figures

Definition. The significant figures of a quantity are the non-zero digits
whose place value is greater than the absolute uncertainty. They are numbered
from left to right. A quantity known to n significant figures has a relative
uncertainty of about 10−n.

Example 3.1. A population clock shows the current world population, increasing
in “real time” by 2–3 people per second (see e. g. worldometers.info). This pur-
ported precision is of course ridiculous. Serious estimates show no more than four
significant figures, i. e. the uncertainty is at least 1 : 104 = 0.01%, or 1 million
people:

7 401 255 094
↑

last significant figure

' 7 401 000 000

In a measurement or calculation, the result often contains more digits
than are actually significant. In this situation, the quantity is rounded to the
last significant digit. The rounded digit is underlined to signal the rounding
error, or level of uncertainty.

Example 3.2.

6 365 964 ' 6 366 000 = 6.366× 106

142

665
= 0.0852 ' 0.085 = 8.5× 10−2

Figure 3.1: Population clock of the US Census Bureau (census.gov): an
example of false precision
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Figure 3.2: “Peak XV”, a. k. a. Mount Everest

When the digit being rounded to is 0 (trailing zero), it is kept (even
after a decimal point) and underlined to indicate that it is significant and
not the result of rounding.

Example 3.3. During the Great Trigonometrical Survey of India, led by Surveyor-
General Sir Andrew Scott Waugh in 1843–1861, the height of “Peak XV” in the
Himalayas was measured to be 29 000 ft ± 1 ft1. However, the height was reported
officially as 29 002 ft in 1850, so as not to give the impression that the trailing
zeroes were the result of rounding. In 1865, Peak XV was named after Waugh’s
predecessor, Sir George Everest. Waugh thus became the first person to put two feet
on Mt. Everest.

When calculating with rounded quantities, the following rules apply:

• The result of an addition or subtraction is rounded to the position
of the least significant digit in the most uncertain operand.

• The result of a multiplication or division is rounded to the number
of significant digits in the most uncertain operand.

Example 3.4.

(a) 494 200 + 53 000 ' 547 000
(b) 8 000 000− 1 ' 8 000 000
(c) 5 100×0.000 339 76 = 5.10×103×3.3976×10−4 ' 17.3×10−1 = 1.73

11 foot = 1 ft = 1’ = 30.48 cm
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Exercise 3.1. Round these numbers to two significant figures and write the result
in scientific notation.

(a) 3 517 428.906
(b) 45 690 973
(c) 0.505× 10−4

Exercise 3.2. Round these numbers to five significant figures and write the result
in decimal form and in scientific form.

(a) 6 666.666
(b) 0.078
(c) π20

Exercise 3.3. Calculate with the appropriate rounding. Write the result in decimal
form and scientific notation.

(a) 82.7 + 193
(b) 0.14286× 7
(c) 0.125× 7.55× 10−3 + 0.6525× 10−4

Exercise 3.4. The speed of light (in a vacuum) is c = 3.00× 108 m/s. There are
365.25 days in a year. A light-year is the distance light travels in a year. How long
is a light-year? Give your answer in scientific notation with appropriate rounding.

Exercise 3.5. The density of water at room temperature is ρ = 998 g/l. Find the
volume of 5 tons of water at room temperature. Give your answer in decimal form
with appropriate rounding.
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4 Solutions to the exercises

1.1 (a) [10.25 g, 10.35 g], 4.9%; (b) [115 ◦C, 125 ◦C], 4.2%
1.2 (a) 12.3 kg± 0.05 kg; (b) 5325 ◦C± 25 ◦C
1.3 (a) 20 million years, [13.78 billion years, 13.82 billion years]; 1 part in 690
1.5 [10.24m2, 10.89m2]
2.1

Planet Mass
Jupiter 1.899× 1027 kg
Saturn 5.685× 1026 kg
Neptune 1.0243× 1026 kg
Uranus 8.683× 1025 kg
Earth 5.974× 1024 kg
Venus 4.869× 1024 kg
Mars 6.419× 1023 kg

Mercury 3.302× 1023 kg

2.2 (a) 910; (b) 4 430 000 000; (c) 10 300 000 000 000 000 000 000; (d) 30 000 421 000 000 000;
(e) 0.000 045; (f) 0.9091; (g) −0.0123
2.3 (a) 9.48× 104; (b) 3.298× 108; (c) 1.553× 1016; (d) 1.254 000 03× 1016;
(e) 5.922× 10−9; (f) 2× 10−19

2.4 (a) 7.07 × 105 = 707 000; (b) 6.1 × 10−2 = 0.061; (c) 3.612 × 1014 =
361 200 000 000 000; (d) 4.3 × 1014 = 430 000 000 000 000; (e) 9.1 × 10−3 =
0.0091
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2.5
decimal form scientific form SI unit

mean distance
Earth–Mars 228 000 000 000 m 2.28× 1011 m –

age of the Sun 4 600 000 000 years 4.6× 109 years –
mass of the Sun

(M�)
1 989 000 000 000 000
000 000 000 000 000 kg 1.989× 1030 kg –

heating power of
the Sun

384 600 000 000 000
000 000 000 000 W 3.846× 1026 W 384.6 YW

mass of a
carbon-12 atom

0.000 000 000 000 000
000 000 019 926 467 1 g 1.992 646 71×10−21 g 19.992 646 71 yg

shortest light
pulse

0.000 000 000
000 000 017 s 1.7× 10−17 s 17 as

typical diameter
of an atom 0.000 000 000 1 m 10−10 m 100 µm

number of cells in
a human body 100 000 000 000 000 1014 –

water content of
the

Mediterranean

4 300 000 000
000 000 000 l 4.3× 1018 l 4.3 El

typical capacity of
a hard drive 1 000 000 000 000 B 1012 B 1 TB

3.1 (a) 3.5× 106; (b) 4.6× 107; (c) 5.1× 10−5

3.2 (a) 6 666.7 = 6.6667×103; (b) 0.078078 = 7.8078×10−2; (c) 8.7700×109

3.3 (a) 276 = 2.76×102; (b) 1.0000 = 1.0000×100; (c) 0.00101 = 1.01×10−3

3.4 9.47× 1015 m
3.5 5.01× 103 l
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