Real numbers

© Ben Hambrecht

Contents

1	Completing the number line	2
2	Subsets of the real numbers	5
3	Solutions to the exercises	10

1 Completing the number line

The decimal representation of a rational number $\frac{p}{q}$ (p, q integers) is either:

- an integer: $\frac{24}{6} = 4$
- a terminating decimal number: $\frac{1}{8} = 0.125$
- or a repeating decimal number: $\frac{33}{14} = 2.3\overline{571428}$

But of course, it is very easy to think of decimal numbers that fall into neither category, i. e. that have an infinite number of digits that do not repeat:

- 1.01001000100001000001...
- 0.123456789101112131415... (Champernowne constant)
- 0.121232123432123454321...
- 24.68101214161820...
- 0.23571113171923... (Copeland-Erdős constant)

Definition. A decimal number that cannot be expressed as a fraction of integers is called an **irrational number** ("not a ratio"). The irrational numbers complement the rationals \mathbb{Q} to form the set of **real numbers** \mathbb{R} .

The rational numbers, while being packed infinitely close on the number line, do not fill it out. Many important numbers are irrational, such as π , $\sqrt{2}$ and most other roots of natural numbers $(\sqrt{3}, \sqrt{5}, \sqrt[3]{2}, ...)$, as we will see in the chapter "Powers and roots".

The sets of numbers \mathbb{N} , \mathbb{Z} and \mathbb{Q} are all part (subsets) of the real numbers \mathbb{R} . They stack into each other like Russian dolls (Fig. 1.1), which we write using using the symbol \subset meaning "is a subset of":

- Every natural number is an integer, so $\mathbb{N} \subset \mathbb{Z}$.
- Every integer is rational, so $\mathbb{Z} \subset \mathbb{Q}$.
- Every rational number is real, so $\mathbb{Q} \subset \mathbb{R}$.

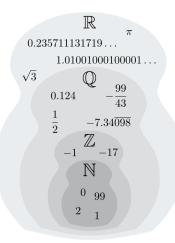


Figure 1.1: The hierarchy of number sets $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ and \mathbb{R}

Exercise 1.1. Mark for each number to which number sets it belongs to and to which not. Which numbers are rational, which are irrational?

	$\in \mathbb{N}$	$\in \mathbb{Z}$	$\in \mathbb{Q}$	$\in \mathbb{R}$	irrational
355					
113					
$0.1491625364964\ldots$					
$0.1234543212345\ldots$					
17					
$-0.\overline{4}$					
1.75					
$\overline{0.25}$					
23:707					
1					
$\overline{99^2}$					
1					
$\overline{\sqrt{2}}$					

Exercise 1.2. True or false?

- (a) Every natural number is rational.
- (b) A number is either rational or real.
- (c) No integer is rational.

- (d) Irrational numbers are not real.
- (e) $\mathbb{N} \subset \mathbb{R}$
- $(f) \ \mathbb{Q} \subset \mathbb{Z}$

Exercise 1.3. Knowing that π is irrational, explain why $\sqrt{\pi}$ is also irrational. Start your argument like this:

"If $\sqrt{\pi}$ were rational, it could be written as a fraction $\frac{p}{q}$ of integer numbers p and q. But then $\pi = \dots$ "

Exercise 1.4. This exercise shows that the number

$$e = 2 + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \dots + \frac{1}{n!} + \dots$$

is irrational. (The notation n!, or "n factorial", is a shorthand for the product of the first n natural numbers $1 \times 2 \times 3 \times \cdots \times n$, e. g. $4! = 1 \times 2 \times 3 \times 4 = 24$.)

(a) Complete the table to get a sequence of increasingly precise approximations of e.

n	<i>n</i> !	$\frac{1}{n!}$	$2 + \frac{1}{2!} + \dots + \frac{1}{n!}$
2			
3			
4			
5			
6			
7			
8			

- (b) If e were a rational number $\frac{p}{q}$ $(p, q \in \mathbb{N})$, multiplying it with q (or any multiple of q) would turn it into a natural number. Let us therefore multiply it with some factorial q!. Develop q!e into a sum. Which terms of the sum are integers, and which are not?
- (c) For q!e to be a natural number, the non-integer terms must sum to an integer. Show that the sum of the non-integer terms is less than $\frac{1}{4} + \frac{1}{4^2} + \frac{1}{a^3} + \dots$
- (d) Find approximate values of this last sum for q = 2. Explain why the value of the infinite sum ¹/₂ + ¹/_{2²} + ¹/_{2³} + ... cannot be greater than 1.
 (e) Thus explain why the sum of non-integer terms in q!e is less than 1,
- (e) Thus explain why the sum of non-integer terms in q!e is less than 1, and thus why e is irrational.

2 Subsets of the real numbers

Definition. A set of numbers S is an infinite, finite or even empty collection of numbers. The numbers contained in S are called its elements. Any number x is either contained in the set: $x \in S$, or not contained in it: $x \notin S$.

Sets of numbers can be described in several ways:

- by **complete enumeration** (the order does not matter):
 - the set of natural numbers less than 5: $\{0, 1, 2, 3, 4\}$
 - the set of prime numbers between 10 and 30: $\{11, 13, 17, 19, 23, 29\}$
 - the set of integers from -3 to $3: \{-3, -2, -1, 0, 1, 2, 3\}$
 - the set of integers between -3 and 3: $\{-2, -1, 0, 1, 2\}$
 - the set of primitive fractions whose value is greater than $\frac{1}{\pi}$: $\{1, \frac{1}{2}, \frac{1}{3}\}$
 - the empty set: $\{\} = \emptyset$
 - the set containing just the number 0: $\{0\}$
 - given any real number x, the set containing just x: $\{x\}$
- by **partial enumeration**, followed by an ellipsis:
 - the set of naturals from 0 to 100: $\{0, 1, 2, 3, \dots, 100\}$
 - the set of inverses of the prime numbers: $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots\}$
 - the set of integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\} = \{0, 1, -1, 2, -2, \dots\}$
 - the set of prime numbers: $\mathbb{P} = \{2, 3, 5, 7, 11, ...\}$
- by a **base set** and a **condition**:
 - the set of real numbers greater than 2: $\{x \in \mathbb{R} \mid x > 2\}$
 - the set of real numbers whose square is 5: $\{x \in \mathbb{R} \mid x^2 = 5\} = \{\sqrt{5}, -\sqrt{5}\}$
 - the set of rational numbers whose square is 5: $\{x \in \mathbb{Q} \mid x^2 = 5\} = \emptyset$
 - the set of irrational numbers: $\{x \in \mathbb{R} \mid \text{there exist no } p, q \in \mathbb{Z} \text{ such that } x = \frac{p}{q}\} = \{x \in \mathbb{R} \mid \text{for no integer } q \text{ is } qx \in \mathbb{Z}\}$
 - the set of even naturals that can be written as the sum of two primes: $\{x \in \mathbb{N} \mid x \text{ is even and } x = p_1 + p_2 \text{ for some } p_1, p_2 \in \mathbb{P}\}$

+ $+$ $+$				+ +	-			+					+→
-8 -7 -6													
+ $+$ $+$				+ +	-								-+>
-8 -7 -6													
+ + + +				+ +	-								+→
 -8 -7 -6													
	-5 -	-4 –	3 -	-2 –1	Ó	1	2	3	4	5	6	7	8

Figure 2.1: The intervals (-4; 3), [-4; 3], (-4; 3] and [-4; 3)

It is unknown whether the last set contains all even naturals or not (Goldbach conjecture).

Definition. Given two real numbers a < b, then the **open interval** (a; b) is the set of real numbers between a and b:

$$(a; b) = \{ x \in \mathbb{R} \mid a < x < b \}.$$

The closed interval is the set

$$[a;b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$$

In analogous fashion we understand the half-open intervals (a; b] and [a; b) (Fig. 2.1).

Definition. A real number a gives rise to the open rays

$$(a;\infty) = \{x \in \mathbb{R} \mid x > a\}$$

and

$$(-\infty; a) = \{ x \in \mathbb{R} \mid x < a \},\$$

as well as the analogously defined closed rays $[a; \infty)$ and $(-\infty; a]$ (Fig. 2.2)

Definition. Sets can be combined in several ways to form new sets. Given two sets A and B, we define:

(a) the intersection of A and B:

$$A \cap B = \{ x \in \mathbb{R} \mid x \in A \text{ and } x \in B \}$$

+ + + + + + + + + + + + + + + + + + + +	-+++++++	
-8 -7 -6 -5 -4 -3 -2 -1 0 1		
+ + + + + + + + + + + + + + + + + + + +		
-8 -7 -6 -5 -4 -3 -2 -1 0 1		
+ + + + + + + + + + + + + + + + + + + +		
-8 -7 -6 -5 -4 -3 -2 -1 0		
	2 3 4 5 6 7 8	

Figure 2.2: The rays $(2; \infty)$, $[2; \infty)$, $(-\infty; 2]$ and $(-\infty; 2)$

	1	1		1
-2	-1	0	1	2
——————————————————————————————————————				
-2	-1	Ó	1	2
	1			1
	-1	0		2
-2	-1	0	1	2
	1	1		1
-2	–1	0	1	2
	1	1		1
2	-1		1	0

Figure 2.3: Operations on sets (example 2.1)

(b) the union of A and B:

 $A \cup B = \{ x \in \mathbb{R} \mid x \in A \text{ or } x \in B \text{ (or both)} \}$

(c) the complement of B in A:

$$A \setminus B = \{ x \in \mathbb{R} \mid x \in A \text{ but } x \notin B \}$$

Example 2.1. Consider the sets $A = \{x \in \mathbb{R} \mid 1 \leq |x| < 2\}$ and B = [-1; 1.5). The set A is the union of two separate intervals: $A = (-2; -1] \cup [1; 2)$, and B (as any interval) is the intersection of two rays: $B = (\infty; 1.5) \cap [-1; \infty)$. The union, intersection and complements of both sets are (Fig. 2.3): $\begin{array}{ll} (a) & A \cup B = (-2;2) \\ (b) & A \cap B = \{-1\} \cup [1;1.5) \\ (c) & A \setminus B = [1.5;2) \\ (d) & B \setminus A = (-1;1) \end{array}$

The set of irrational numbers can thus be written as the complement of \mathbb{Q} in \mathbb{R} , i. e. $\mathbb{R} \setminus \mathbb{Q}$.

Exercise 2.1. Represent the sets on the number line.

$(a) \ (-3;3)$						
+ + + -4 -3 -2	-1	0	1	2		4
$(b) \ [-3;3]$						
+ + + -4 -3 -2	1	0	1	2	3	$\xrightarrow{4}$
$(c) \{-3,3\}$						1.5
-4 -3 -2	-1	0	1	2	3	→ 4
$(d) \{-3.3\}$						
-4 -3 -2	-1	0	1	2	3	+> 4
(e) $(1;3) \cup [-2;0)$						
-4 -3 -2	-1	0	1	2	3	→ 4
$(f) \mathbb{N} \cap (-\infty; 4)$						1.5
-4 -3 -2	-1	0	1	2	3	4
$(g) \ [-4;-1] \cap (-1;2)$						1.5
-4 -3 -2	-1	0	1	2	3	4
$(h) \ \mathbb{R} \setminus \{\sqrt{2}, -\sqrt{2}\}$						1.5
-4 -3 -2	-1	0	1	2	3	4
(i) $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$						
-4 -3 -2	-1	0	1	2	3	→ 4

(a) A								
+			 1	0		2		+→ 4
(b) B								
+ 4		2	——————————————————————————————————————	0	 1	2	3	+→ 4
$(c) A \cup E$	3							
+	-3	-2		0	1	2	3	+ > 4
(d) $A \cap B$	3							
+	-3	-2	-1	0	1	2	3	 → 4
(e) $A \setminus B$	}							
+	-3	-2		0		2	3	+ → 4
(f) $B \setminus A$	L							
+ 4	-3	-2	1	0	1	2	3	 → 4

Exercise 2.2. Let $A = \{x \in \mathbb{R} \mid 2x \text{ is natural}\}$ and $B = \{x \in \mathbb{R} \mid x \leq 2\}$. Represent on the number line and write in set or interval notation:

3 Solutions to the exercises

	$\in \mathbb{N}$	$\in \mathbb{Z}$	$\in \mathbb{Q}$	$\in \mathbb{R}$	irrational
$\boxed{\frac{355}{113}}$	×	×	\checkmark	\checkmark	×
0.1491625364964	X	X	X	\checkmark	\checkmark
$0.1234543212345\dots$	X	X	\checkmark	\checkmark	×
17	\checkmark	\checkmark	\checkmark	\checkmark	×
$-0.\overline{4}$	X	X	\checkmark	\checkmark	×
$\frac{1.75}{0.25}$	\checkmark	\checkmark	\checkmark	\checkmark	×
23:707	X	X	\checkmark	\checkmark	X
$\frac{1}{99^2}$	×	×	\checkmark	\checkmark	×
$\frac{1}{\sqrt{2}}$	×	X	×	\checkmark	\checkmark

1.1

 $\mathbf{1.2}$ (a) true; (b) false; (c) false; (d) false; (e) true; (f) false $\mathbf{1.4}$

n	n!	$\frac{1}{n!}$	$2 + \frac{1}{2!} + \dots + \frac{1}{n!}$
2	2	0.5	2.5
3	6	$0.1\overline{6}$	$2.\overline{6}$
4	24	$0.041\overline{6}$	$2.708\overline{3}$
5	120	$0.008\overline{3}$	$2.71\overline{6}$
6	720	$0.0013\overline{8}$	$2.7180\overline{5}$
7	5040	$\simeq 0.0001984127$	$\simeq 2.7182539683$
8	40 320	$\simeq 0.0000248016$	$\simeq 2.7182787698$

2.1 (a) $A = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \dots\};$ (b) $B = (-\infty; 2];$ (c) $A \cup B = (-\infty; 2] \cup \{\frac{5}{2}, 3, \frac{7}{2}, \dots\};$ (d) $A \cap B = \{0, \frac{1}{2}, 1\frac{3}{2}, 2\};$ (e) $A \setminus B = \{\frac{5}{2}, 3, \frac{7}{2}, \dots\};$ (f) $B \setminus A = (-\infty; 2) \setminus \{0, \frac{1}{2}, 1, \frac{3}{2}\} = (-\infty; 0) \cup (0; \frac{1}{2}) \cup (\frac{1}{2}; 1) \cup (1; \frac{3}{2}) \cup (\frac{3}{2}; 2)$