Real numbers

(C) Ben Hambrecht

Contents

1 Completing the number line 2
2 Subsets of the real numbers 5
3 Solutions to the exercises 10

1 Completing the number line

The decimal representation of a rational number $\frac{p}{q}(p, q$ integers $)$ is either:

- an integer: $\frac{24}{6}=4$
- a terminating decimal number: $\frac{1}{8}=0.125$
- or a repeating decimal number: $\frac{33}{14}=2.3 \overline{571428}$

But of course, it is very easy to think of decimal numbers that fall into neither category, i. e. that have an infinite number of digits that do not repeat:

- $1.01001000100001000001 \ldots$
- $0.123456789101112131415 \ldots$ (Champernowne constant)
- $0.121232123432123454321 \ldots$
- $24.68101214161820 \ldots$
- $0.23571113171923 \ldots$ (Copeland-Erdős constant)

Definition. A decimal number that cannot be expressed as a fraction of integers is called an irrational number ("not a ratio"). The irrational numbers complement the rationals \mathbb{Q} to form the set of real numbers \mathbb{R}.

The rational numbers, while being packed infinitely close on the number line, do not fill it out. Many important numbers are irrational, such as π, $\sqrt{2}$ and most other roots of natural numbers $(\sqrt{3}, \sqrt{5}, \sqrt[3]{2}, \ldots)$, as we will see in the chapter "Powers and roots".

The sets of numbers \mathbb{N}, \mathbb{Z} and \mathbb{Q} are all part (subsets) of the real numbers \mathbb{R}. They stack into each other like Russian dolls (Fig. 1.1), which we write using using the symbol \subset meaning "is a subset of":

- Every natural number is an integer, so $\mathbb{N} \subset \mathbb{Z}$.
- Every integer is rational, so $\mathbb{Z} \subset \mathbb{Q}$.
- Every rational number is real, so $\mathbb{Q} \subset \mathbb{R}$.

Figure 1.1: The hierarchy of number sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}

Exercise 1.1. Mark for each number to which number sets it belongs to and to which not. Which numbers are rational, which are irrational?

	$\in \mathbb{N}$	$\in \mathbb{Z}$	$\in \mathbb{Q}$	$\in \mathbb{R}$	irrational
$\frac{355}{113}$					
$0.1491625364964 \ldots$					
$0.1234543212345 \ldots$					
17					
$-0 . \overline{4}$					
$\frac{1.75}{0.25}$					
$23: 707$					
$\frac{1}{99^{2}}$					
$\frac{1}{\sqrt{2}}$					

Exercise 1.2. True or false?
(a) Every natural number is rational.
(b) A number is either rational or real.
(c) No integer is rational.
(d) Irrational numbers are not real.
(e) $\mathbb{N} \subset \mathbb{R}$
(f) $\mathbb{Q} \subset \mathbb{Z}$

Exercise 1.3. Knowing that π is irrational, explain why $\sqrt{\pi}$ is also irrational. Start your argument like this:
"If $\sqrt{\pi}$ were rational, it could be written as a fraction $\frac{p}{q}$ of integer numbers p and q. But then $\pi=\ldots "$

Exercise 1.4. This exercise shows that the number

$$
e=2+\frac{1}{1 \times 2}+\frac{1}{1 \times 2 \times 3}+\frac{1}{1 \times 2 \times 3 \times 4}+\cdots+\frac{1}{n!}+\ldots
$$

is irrational. (The notation n !, or " n factorial", is a shorthand for the product of the first n natural numbers $1 \times 2 \times 3 \times \cdots \times n$, e. $g .4!=1 \times 2 \times 3 \times 4=24$.)
(a) Complete the table to get a sequence of increasingly precise approximations of e.

n	$n!$	$\frac{1}{n!}$	$2+\frac{1}{2!}+\cdots+\frac{1}{n!}$
2			
3			
4			
5			
6			
7			
8			

(b) If e were a rational number $\frac{p}{q}(p, q \in \mathbb{N})$, multipliying it with q (or any multiple of q) would turn it into a natural number. Let us therefore multiply it with some factorial q !. Develop q !e into a sum. Which terms of the sum are integers, and which are not?
(c) For q!e to be a natural number, the non-integer terms must sum to an integer. Show that the sum of the non-integer terms is less than $\frac{1}{q}+\frac{1}{q^{2}}+\frac{1}{q^{3}}+\ldots$
(d) Find approximate values of this last sum for $q=2$. Explain why the value of the infinite sum $\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots$ cannot be greater than 1 .
(e) Thus explain why the sum of non-integer terms in q!e is less than 1, and thus why e is irrational.

2 Subsets of the real numbers

Definition. A set of numbers S is an infinite, finite or even empty collection of numbers. The numbers contained in S are called its elements. Any number x is either contained in the set: $x \in S$, or not contained in it: $x \notin S$.

Sets of numbers can be described in several ways:

- by complete enumeration (the order does not matter):
- the set of natural numbers less than 5: $\{0,1,2,3,4\}$
- the set of prime numbers between 10 and $30:\{11,13,17,19,23,29\}$
- the set of integers from -3 to $3:\{-3,-2,-1,0,1,2,3\}$
- the set of integers between -3 and $3:\{-2,-1,0,1,2\}$
- the set of primitive fractions whose value is greater than $\frac{1}{\pi}:\left\{1, \frac{1}{2}, \frac{1}{3}\right\}$
- the empty set: $\}=\emptyset$
- the set containing just the number 0: $\{0\}$
- given any real number x, the set containing just $x:\{x\}$
- by partial enumeration, followed by an ellipsis:
- the set of naturals from 0 to 100: $\{0,1,2,3, \ldots, 100\}$
- the set of inverses of the prime numbers: $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\}$
- the set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=\{0,1,-1,2,-2, \ldots\}$
- the set of prime numbers: $\mathbb{P}=\{2,3,5,7,11, \ldots\}$
- by a base set and a condition:
- the set of real numbers greater than 2: $\{x \in \mathbb{R} \mid x>2\}$
- the set of real numbers whose square is $5:\left\{x \in \mathbb{R} \mid x^{2}=5\right\}=$ $\{\sqrt{5},-\sqrt{5}\}$
- the set of rational numbers whose square is $5:\left\{x \in \mathbb{Q} \mid x^{2}=5\right\}=$ \emptyset
- the set of irrational numbers: $\{x \in \mathbb{R} \mid$ there exist no $p, q \in$ \mathbb{Z} such that $\left.x=\frac{p}{q}\right\}=\{x \in \mathbb{R} \mid$ for no integer q is $q x \in \mathbb{Z}\}$
- the set of even naturals that can be written as the sum of two primes: $\left\{x \in \mathbb{N} \mid x\right.$ is even and $x=p_{1}+p_{2}$ for some $\left.p_{1}, p_{2} \in \mathbb{P}\right\}$

Figure 2.1: The intervals $(-4 ; 3),[-4 ; 3],(-4 ; 3]$ and $[-4 ; 3)$

It is unknown whether the last set contains all even naturals or not (Goldbach conjecture).

Definition. Given two real numbers $a<b$, then the open interval $(a ; b)$ is the set of real numbers between a and b :

$$
(a ; b)=\{x \in \mathbb{R} \mid a<x<b\} .
$$

The closed interval is the set

$$
[a ; b]=\{x \in \mathbb{R} \mid a \leq x \leq b\} .
$$

In analogous fashion we understand the half-open intervals ($a ; b]$ and $[a ; b)$ (Fig. 2.1).

Definition. A real number a gives rise to the open rays

$$
(a ; \infty)=\{x \in \mathbb{R} \mid x>a\}
$$

and

$$
(-\infty ; a)=\{x \in \mathbb{R} \mid x<a\}
$$

as well as the analogously defined closed rays $[a ; \infty)$ and $(-\infty ; a]$ (Fig. 2.2)

Definition. Sets can be combined in several ways to form new sets. Given two sets A and B, we define:
(a) the intersection of A and B :

$$
A \cap B=\{x \in \mathbb{R} \mid x \in A \text { and } x \in B\}
$$

Figure 2.2: The rays $(2 ; \infty),[2 ; \infty),(-\infty ; 2]$ and $(-\infty ; 2)$

Figure 2.3: Operations on sets (example 2.1)
(b) the union of A and B :

$$
A \cup B=\{x \in \mathbb{R} \mid x \in A \text { or } x \in B \text { (or both) }\}
$$

(c) the complement of B in A :

$$
A \backslash B=\{x \in \mathbb{R} \mid x \in A \text { but } x \notin B\}
$$

Example 2.1. Consider the sets $A=\{x \in \mathbb{R}|1 \leq|x|<2\}$ and $B=[-1 ; 1.5)$. The set A is the union of two separate intervals: $A=(-2 ;-1] \cup[1 ; 2)$, and B (as any interval) is the intersection of two rays: $B=(\infty ; 1.5) \cap[-1 ; \infty)$. The union, intersection and complements of both sets are (Fig. 2.3):
(a) $A \cup B=(-2 ; 2)$
(b) $A \cap B=\{-1\} \cup[1 ; 1.5)$
(c) $A \backslash B=[1.5 ; 2)$
(d) $B \backslash A=(-1 ; 1)$

The set of irrational numbers can thus be written as the complement of \mathbb{Q} in \mathbb{R}, i. e. $\mathbb{R} \backslash \mathbb{Q}$.

Exercise 2.1. Represent the sets on the number line.
(a) $(-3 ; 3)$

(b) $[-3 ; 3]$

(c) $\{-3,3\}$

(d) $\{-3.3\}$

(e) $(1 ; 3) \cup[-2 ; 0)$

(f) $\mathbb{N} \cap(-\infty ; 4)$

(g) $[-4 ;-1] \cap(-1 ; 2)$

(h) $\mathbb{R} \backslash\{\sqrt{2},-\sqrt{2}\}$

(i) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$

Exercise 2.2. Let $A=\{x \in \mathbb{R} \mid 2 x$ is natural $\}$ and $B=\{x \in \mathbb{R} \mid x \leq 2\}$. Represent on the number line and write in set or interval notation:
(a) A

(b) B

(c) $A \cup B$

(d) $A \cap B$

(e) $A \backslash B$

3 Solutions to the exercises

1.1

	$\in \mathbb{N}$	$\in \mathbb{Z}$	$\in \mathbb{Q}$	$\in \mathbb{R}$	irrational
$\frac{355}{113}$	x	x	\checkmark	\checkmark	x
$0.1491625364964 \ldots$	x	x	x	\checkmark	\checkmark
$0.1234543212345 \ldots$	x	x	\checkmark	\checkmark	x
17	\checkmark	\checkmark	\checkmark	\checkmark	x
$-0 . \overline{4}$	x	x	\checkmark	\checkmark	x
$\frac{1.75}{0.25}$	\checkmark	\checkmark	\checkmark	\checkmark	x
$23: 707$	x	x	\checkmark	\checkmark	x
$\frac{1}{99^{2}}$	x	x	\checkmark	\checkmark	x
$\frac{1}{\sqrt{2}}$	x	x	x	\checkmark	\checkmark

1.2 (a) true; (b) false; (c) false; (d) false; (e) true; (f) false 1.4

n	$n!$	$\frac{1}{n!}$	$2+\frac{1}{2!}+\cdots+\frac{1}{n!}$
2	2	0.5	2.5
3	6	$0.1 \overline{6}$	$2 . \overline{6}$
4	24	$0.041 \overline{6}$	$2.708 \overline{3}$
5	120	$0.008 \overline{3}$	$2.71 \overline{6}$
6	720	$0.0013 \overline{8}$	$2.7180 \overline{5}$
7	5040	$\simeq 0.0001984127$	$\simeq 2.7182539683$
8	40320	$\simeq 0.0000248016$	$\simeq 2.7182787698$

2.1 (a) $A=\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots\right\}$; (b) $B=(-\infty ; 2] ;$ (c) $A \cup B=(-\infty ; 2] \cup$ $\left\{\frac{5}{2}, 3, \frac{7}{2}, \ldots\right\} ;$ (d) $A \cap B=\left\{0, \frac{1}{2}, 1 \frac{3}{2}, 2\right\} ;$ (e) $A \backslash B=\left\{\frac{5}{2}, 3, \frac{7}{2}, \ldots\right\}$; (f) $B \backslash A=$ $(-\infty ; 2) \backslash\left\{0, \frac{1}{2}, 1, \frac{3}{2}\right\}=(-\infty ; 0) \cup\left(0 ; \frac{1}{2}\right) \cup\left(\frac{1}{2} ; 1\right) \cup\left(1 ; \frac{3}{2}\right) \cup\left(\frac{3}{2} ; 2\right)$

